Structure of 6,8-Diacetyl-2,4-dinitro-2,4,6,8-tetraazabicyclo[3.3.0]octane

By Richard Gilardi, Clifford George and Judith L. Flippen-Anderson
Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375, USA

(Received 4 November 1991; accepted 17 December 1991)

Abstract

C}_{8} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{6}, M_{r}=288.22\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=8.482(1), \quad b=11.844$ (2), $\quad c=$ 11.943 (2) $\AA, \quad V=1199.8(4) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.596 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA, \quad \mu=$ $1.15 \mathrm{~mm}^{-1}, \quad F(000)=600, \quad T=295 \mathrm{~K}$, final $R=$ $0.035, w R=0.046$ for 1092 independent observed reflections. This bicyclic heterocycle has a cis ring junction, and ring torsions centered about the shared bond are nearly eclipsed (17.0 and 18.8°). The acetyl groups are disposed asymmetrically across the pseudo-mirror plane of the molecule, with the carbonyl of one pointing towards, and that of the other pointing away from the ring junction. The amino N atoms vary in hybridization. The two acetylated amines are nearly trigonal planar, with the N C (keto) bonds bent only 6.9 and 7.6° from the adjacent $\mathrm{C}-\mathrm{N}-\mathrm{C}$ planes, while the two nitroamines are nearly tetrahedral, with their $\mathrm{N}-\mathrm{N}$ bonds bent 31.0 and 31.9° from adjacent $\mathrm{C}-\mathrm{N}-\mathrm{C}$ planes.

Experimental. A clear colorless $0.20 \times 0.24 \times$ 0.27 mm data crystal was provided by Dr Clifford L. Coon of the Livermore National Laboratory, California. An automated Siemens $R 3 \mathrm{~m} / V$ diffractometer with incident beam monochromator was used for data collection. 25 centered reflections within $39 \leq$ $2 \theta \leq 77^{\circ}$ were used for determining lattice parameters. $[\sin (\theta) / \lambda]_{\max }=0.570 \AA^{-1}$; range of $h k l: 0 \leq h$ $\leq 9,-13 \leq k \leq 0,0 \leq l \leq 13$. Standards 400,333 and 006, monitored every 97 reflections, showed random variation of 2.0% over data collection: $\theta / 2 \theta$ mode, scan width [$2 \theta\left(K \alpha_{1}\right)-1.0$] to $\left[2 \theta\left(K \alpha_{2}\right)+\right.$ $1.0]^{\circ}, \omega$-scan rate a function of count rate ($2.5^{\circ} \mathrm{min}^{-1}$ minimum, $15.0^{\circ} \mathrm{min}^{-1}$ maximum), 1149 reflections measured, 1130 unique, 1092 observed with $F_{o}>3 \sigma\left(F_{o}\right)$. Data were corrected for Lorentz and polarization effects.

The structure solution, by direct methods, and the least-squares refinement used programs in SHELXTL80 (Sheldrick, 1980). $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was minimized where $w^{-1}=\sigma^{2}\left(\left|F_{o}\right|\right)+g\left(F_{o}\right)^{2}, g=$ 0.000225. Secondary-extinction parameter $p=$ $0.005(1)$ in $F_{c}{ }^{*}=F_{c} /\left[1.0+0.002(p) F_{o}^{2} / \sin (2 \theta)\right]^{0.25}$. There were 212 parameters refined: atom coordinates, anisotropic thermal parameters for all non-H atoms, coordinates and isotropic thermal parameters

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement coefficients $\left(\AA^{2} \times 10^{3}\right)$
Equivalent isotropic U is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	\boldsymbol{x}	y	2	$U_{\text {eq }}$
C(1)	7326 (3)	2537 (2)	3635 (3)	35 (1)
N(2)	8669 (3)	2012 (2)	3087 (2)	43 (1)
C(3)	8539 (4)	2000 (3)	1885 (3)	51 (1)
N(4)	6905 (3)	2375 (2)	1713 (2)	40 (1)
C(5)	6001 (3)	2536 (2)	2750 (3)	35 (1)
N(6)	5334 (3)	3650 (2)	2820 (2)	38 (1)
C(7)	6528 (3)	4452 (3)	3186 (3)	42 (1)
N(8)	7572 (3)	3734 (2)	3846 (2)	39 (1)
$\mathrm{N}\left(2^{\prime}\right)$	9393 (3)	1090 (2)	3573 (3)	57 (1)
$\mathrm{O}(2 a)$	9125 (4)	908 (2)	4555 (3)	80 (1)
$\mathrm{O}(2 b)$	10326 (3)	575 (2)	2977 (3)	80 (1)
$\mathrm{N}\left(4^{\prime}\right)$	6153 (3)	1944 (2)	802 (2)	47 (1)
$\mathrm{O}(4 a)$	6979 (4)	1576 (2)	48 (2)	71 (1)
O(4b)	4728 (3)	2016 (2)	787 (2)	59 (1)
C(6)	3791 (3)	3988 (3)	2730 (3)	41 (1)
O(6)	3508 (2)	5002 (2)	2737 (2)	55 (1)
C(9)	2531 (4)	3113 (3)	2653 (3)	53 (1)
C(8)	8525 (4)	4085 (3)	4696 (3)	44 (1)
O(8)	9268 (3)	3407 (2)	5242 (2)	67 (1)
C(10)	8576 (4)	5335 (3)	4907 (3)	57 (1)

for all non-methyl H atoms, methyl H atoms included using riding model [coordinate shifts of C applied to attached H atoms, torsion of methyl group allowed, $\mathrm{C}-\mathrm{H}$ set to $0.96 \AA, \mathrm{H}$ angles idealized, $\left.U(\mathrm{H})=1.1 U_{\mathrm{eq}}(\mathrm{C})\right] .(\Delta / \sigma)_{\max }=0.003$, ratio of observations to parameters $=5.5: 1, R=0.035, w R=$ $0.046, S=2.25 \quad(R=0.036$ for all data). Final difference Fourier excursions were 0.19 and $-0.19 \mathrm{e} \AA^{-3}$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). Atom numbering for Tables 1 (atom coordinates) and 2 (bond distances and angles) follows that shown in Fig. 1.*

Related literature. This ring system (saturated 2,4,6,8-tetraazabicyclo[3.3.0]octane) occurs in five crystal structures reported by Koppes, Chaykovsky, Adolph, Gilardi \& George (1987); one is very similar, being the same as the title compound except that the two nitro groups are replaced by acetyl groups. The structural statistics of nitramine groups were

[^0]Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$

	$1.453(4)$	$\mathrm{C}(1)-\mathrm{C}(5)$	$1.543(4)$
$\mathrm{C}(1)-\mathrm{N}(2)$	$1.455(4)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.440(4)$
$\mathrm{C}(1)-\mathrm{N}(8)$	$1.380(4)$	$\mathrm{C}(3)-\mathrm{N}(4)$	$1.470(4)$
$\mathrm{N}(2)-\mathrm{N}\left(2^{\prime}\right)$	$1.470(4)$	$\mathrm{N}(4)-\mathrm{N}\left(4^{\prime}\right)$	$1.360(4)$
$\mathrm{N}(4)-\mathrm{C}(5)$	$\mathrm{N}(6)-\mathrm{C}(7)$	$1.456(4)$	
$\mathrm{C}(5)-\mathrm{N}(6)$	$\mathrm{C}(7)-\mathrm{N}(8)$	$1.459(4)$	
$\mathrm{N}(6)-\mathrm{C}\left(6^{\prime}\right)$	$1.373(3)$	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}(2 a)$	$1.214(5)$
$\mathrm{N}(8)-\mathrm{C}\left(8^{\prime}\right)$	$1.364(4)$	$\mathrm{N}\left(4^{\prime}-\mathrm{O}(4 a)\right.$	$1.222(4)$
$\mathrm{N}\left(2^{\prime}-\mathrm{O}(2 b)\right.$	$1.226(4)$	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{O}(6)$	$1.225(4)$
$\mathrm{N}\left(4^{\prime}-\mathrm{O}(4 b)\right.$	$1.212(4)$	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{O}(8)$	$1.211(4)$
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}(9)$			
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(10)$	$1.492(4)$	$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(8)$	$112.5(2)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	$105.2(2)$	$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$113.2(2)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{N}(8)$	$102.9(2)$	$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{N}\left(2^{\prime}\right)$	$116.5(3)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{N}\left(2^{\prime}\right)$	$119.9(2)$	$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$114.4(2)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{N}(4)$	$102.0(2)$	$\mathrm{C}(5)-\mathrm{N}(4)-\mathrm{N}\left(4^{\prime}\right)$	$118.5(2)$
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{N}\left(4^{\prime}\right)$	$116.1(2)$	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{N}(6)$	$104.3(2)$
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{N}(4)$	$101.4(2)$	$\mathrm{C}(5)-\mathrm{N}(6)-\mathrm{C}(7)$	$110.0(2)$
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{N}(6)$	$111.9(2)$	$\mathrm{C}(7)-\mathrm{N}(6)-\mathrm{C}\left(6^{\prime}\right)$	$119.8(2)$
$\mathrm{C}(5)-\mathrm{N}(6)-\mathrm{C}\left(6^{\prime}\right)$	$129.7(2)$	$\mathrm{C}(1)-\mathrm{N}(8)-\mathrm{C}(7)$	$112.8(2)$
$\mathrm{N}(6)-\mathrm{C}(7)-\mathrm{N}(8)$	$101.8(2)$	$\mathrm{C}(7)-\mathrm{N}(8)-\mathrm{C}\left(8^{\prime}\right)$	$125.8(2)$
$\mathrm{C}(1)-\mathrm{N}(8)-\mathrm{C}\left(8^{\prime}\right)$	$120.7(2)$	$\mathrm{N}(2)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}(2 b)$	$115.9(3)$
$\mathrm{N}(2)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}(2 a)$	$117.6(3)$	$\mathrm{N}(4)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}(4 a)$	$117.0(3)$
$\mathrm{O}(2 a)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{O}(2 b)$	$126.3(3)$	$\mathrm{O}(4 a)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}(4 b)$	$125.9(3)$
$\mathrm{N}(4)-\mathrm{N}\left(4^{\prime}\right)-\mathrm{O}(4 b)$	$117.0(3)$	$\mathrm{N}(6)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}(9)$	$119.0(3)$
$\mathrm{N}(6)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{O}(6)$	$118.2(3)$	$\mathrm{N}(8)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{O}(8)$	$120.5(3)$
$\mathrm{O}(6)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}(9)$	$122.8(3)$	$\mathrm{O}(8)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(10)$	$123.3(3)$
$\mathrm{N}(8)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(10)$	$116.2(3)$		

discussed briefly by Archibald, Gilardi, Baum \& George (1990).

This work was supported in part by the Office of Naval Research, Mechanics Division.

Fig. 1. A thermal ellipsoid plot of the title compound with ellipsoids drawn at the 20% probability level.

References

Archibald, T. G., Gilardi, R., Baum, K. \& George, C. (1990). J. Org. Chem. 55, 2920-2924.

Koppes, W. M., Chaykovsky, M., Adolph, H. G., Gilardi, R. \& George, C. (1987). J. Org. Chem. 52, 11131119.

Sheldrick, G. M. (1980). SHELXTL80. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Germany.

Acta Cryst. (1992). C48, 1533-1535

Structure of a Chiral Bicyclic $\boldsymbol{\beta}$-Hydroxyphosphonamide an Asymmetric Olefination Intermediate, $\mathrm{C}_{25} \mathbf{H}_{\mathbf{4 1}} \mathbf{N}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}} \mathrm{P}$

By Francine Bélanger-Gariépy, Youssef L. Bennani, Serge Beaudoin and Stephen Hanessian* Département de Chimie, Université de Montréal, CP 6128, Succ. A, Montréal, Québec, Canada H3C 3J7

(Received 11 July 1991; accepted 10 December 1991)

Abstract

R,7aR)-2,3,3a,4,5,6,7,7a-Octahydro-$2-[(R)-\alpha$-(1-hydroxy-4-tert-butylcyclohexyl)phenyl-methyll-1,3-dimethyl-1 H-1,3,2-benzodiazaphosphole 2-oxide, $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}, M_{r}=432.59$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=10.636(2), \quad b=12.759(1), \quad c=$ $18.185(2) \AA, \quad V=2467.8(5) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.164 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \bar{\alpha})=1.54178 \AA, \quad \mu=$ $1.138 \mathrm{~mm}^{-1}, \quad F(000)=944, \quad T=293 \mathrm{~K}, \quad R=0.047$, $w R=0.039$ for 1884 observed reflections. The title compound is constituted of a $(1 R, 2 R)-N, N^{\prime}-$ dimethyl-1,2-diaminocyclohexane attached to a tetrahedrally coordinated phosphoryl group. A phenylmethyl group with an R configuration bridges the P atom and the 4 -tert-butylcyclohexanol ring. The tertiary alcohol is in the axial position and the

[^1]0108-2701/92/081533-03\$06.00

4-tert-butyl is in the equatorial position. The molecules are held in the crystal through intermolecular hydrogen bonds of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ type and by van der Waals interactions.

Experimental. The reaction of the anion formed from the chiral non-racemic bicyclic phosphonamide (I) (Hanessian \& Beaudoin, 1992) with 4-tert-butylcyclohexanone gave a crystalline adduct (II) in which the orientations of the substituents at the bond forming sites were elucidated by single-crystal X-raydiffraction studies.

(c) 1992 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54968 (8 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH0606]

[^1]: * To whom correspondence should be addressed.

